MATH 4010: Functional Analysis: Complementary Exercise December 2019

- 1. Let $-\infty < a < b < \infty$ and let $(\mu_k)_{k=0}^{\infty}$ be a sequence of real numbers. Show that the following statements are equivalent.
 - (i) There is a bounded variation $g:[a,b] \to \mathbb{R}$ such that

$$\int_{a}^{b} x^{k} dg(x) = \mu_{k}$$

for all k = 0, 1, 2, ...

(ii) There is C > 0 such that

$$|\sum_{k=0}^{N} a_k \mu_k| \le C \max\{|\sum_{k=0}^{N} a_k x^k| : x \in [a, b]\}$$

for all $a_k \in \mathbb{R}$ and for all $N = 0, 1, 2, \dots$

- 2. Let H be a Hilbert space. Let $u: H \to H$ be a bounded linear operator. Show that the followings are equivalent
 - (i) u^*u is a projection.
 - (ii) uu^* is a projection.
 - (iii) There are closed subspaces E and F of H such that the restriction of u on E is an isometry from E onto F with ker $u = E^{\perp}$.
- 3. Let X be a normed space and let S_{X^*} be the closed unit sphere of X^* . Suppose that there is 0 < r < 1 such that $S_{X^*} \subseteq \bigcup_{k=1}^n B(x_k^*, r)$ for some x_1^*, \dots, x_n^* in X^* with $||x_k^*|| = 1$ for all $k = 1, \dots, n$.

Define a linear map $T: X \to c_0$ by

$$T(x) = (x_1^*(x), \dots, x_n^*(x), 0, \dots) \in c_0.$$

- (i) Show that ||T|| = 1
- (ii) Show that $||x|| \leq \frac{1}{1-r} ||Tx||$ for all $x \in X$.
- (iii) Show that the operator is an isomorphism from X onto a subspace T(X) of c_0 and $||T^{-1}|| \le 1/(1-r)$.
- (iv) If Y is a Banach space, show that for any $\varepsilon > 0$ and any finite dimensional subspace E of Y, there is an isomorphism T from E onto a subspace F of c_0 such that $||T|| ||T^{-1}|| < 1 + \varepsilon$.